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Abstract. In the light of the Sturm-Liouville theorem, the Levinson theorem for the
Schr̈odinger equation with both local and non-local cylindrically symmetric potentials is studied.
It is proved that the two-dimensional Levinson theorem holds for the case with both local and
non-local cylindrically symmetric cut-off potentials, which is not necessarily separable. In
addition, the problems related to the positive-energy bound states and the physically redundant
state are also discussed.

1. Introduction

The Levinson theorem [1], an important theorem in scattering theory, established the
relation between the total number of bound states and the phase shifts at zero momentum.
The Levinson theorem has been proved by several authors with different methods, and
generalized to different fields [2–9], including the cases with the non-local interactions [4, 5].
Generally speaking, three main methods are used to prove the Levinson theorem. One [1]
is based on an elaborate analysis of the Jost function. This method requires a well-behaved
potential. The second, based on the Green-function method [6], expounds that the total
number of the physical states, which is infinite, is proved to be independent of the potential
and the number of the bound states is the difference between the infinite numbers of the
scattering states without and with the potential. The third method proves the Levinson
theorem by the Sturm–Liouville theorem [7, 8]. This simple, intuitive method can easily be
generalized. Some obstacles and ambiguities, which may occur with the other two methods,
disappear in the third method. We have succeeded in dealing with the non-relativistic and
relativistic problems in two dimensions in this way [10, 11].

The reasons why we write this paper are that, on the one hand, the Levinson theorem
in two dimensions has been studied by experiment [12] as well as theoretically [13, 10, 11]
because of the wide interest in lower-dimensional field theories and other modern physics
[14–20], and on the other, the Levinson theorem for non-local interactions in two dimensions
has never appeared in the literature.

This paper is organized as follows. In section 2, we establish the Sturm–Liouville
theorem for non-local interactions in two dimensions. The Levinson theorem for this case
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will be set up in section 3. Some problems related to the positive-energy bound states and
the physically redundant state will be studied in sections 4 and 5.

2. The Sturm–Liouville theorem

Throughout this paper ¯h = 1 and the massµ = 1
2 are employed for simplicity. Consider the

Schr̈odinger equation with a local potentialV (r) and a non-local potentialU(r, r ′), where
both potentials are cylindrically symmetric:

Hψ(r, ϕ) = −
(

1

r

∂

∂r
r
∂

∂r
+ 1

r2

∂2

∂ϕ2

)
ψ(r, ϕ)+ V (r)ψ(r, ϕ)

+
∫
U(r, r ′)δ(ϕ′ − ϕ)ψ(r ′, ϕ′) r ′dr ′ dϕ

= Eψ(r, ϕ). (1)

The mesonic theory of nuclear forces indicates that the interaction between two nucleons
is local at great distances but becomes non-local if the two nucleons come close. To simplify
the expression, we assume, following Martin [4], that the non-local potentialU(r, r ′) is real,
continuous, symmetric, and vanishing at large distances [21]:

U(r, r ′) =


U(r ′, r)

U(r, r ′) = O(r−1) at r ∼ 0

U(r, r ′) = 0 whenr > r0.

(2)

As usual, the local potentialV (r) is real and continuous. We assume thatV (r) satisfies

V (r) =
{

O(r−1) at r ∼ 0

V (r) = 0 whenr > r0.
(3)

The first condition is necessary for the wavefunction to be well-behaved at the origin [1],
and the potential with the second condition is called a cut-off one, namely, it vanishingly
small beyond a sufficiently large radiusr0. It was proved that the tail of the local potential
at infinity will not change the essence of the proof [10] if it decays faster thanr−3 at infinity.
Under this assumption, the range of the in (1) is, in fact, from 0 tor0, and the equation in
the region [r0,∞) becomes that for the free particle.

We introduce a parameterλ for the potentials

V (r, λ) = λV (r) U(r, r ′, λ) = λU(r, r ′). (4)

As λ increases from zero to one, the potentialsV (r, λ) andU(r, r ′, λ) change from zero to
the given potentialsV (r) andU(r, r ′), respectively.

Owing to the symmetry of the potentials, letting

ψ(r, φ, λ) = r−1/2REm(r, λ)e
±imφ m = 0, 1, 2, . . . (5)

we obtain the radial equation

∂2

∂r2
REm(r, λ)+

(
E − V (r, λ)− m

2− 1/4

r2

)
REm(r, λ)

= √r
∫
U(r, r ′, λ)REm(r ′, λ)

√
r ′ dr ′ (6)
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where±m andE denote the angular momentum and energy, respectively. Since the radial
functionREm(r, λ) is independent of the sign of the angular momentum, we only discuss
the cases with non-negativem.

We are going to solve the radial equation (6) in two regions [0, r0] and [r0,∞), and
match two solutions atr0. Since the Schr̈odinger equation is linear, the wavefunction can
be multiplied by a constant factor. Removing the effect of the factor, we only need one
matching condition atr0 for the logarithmic derivative of the radial function:

Am(E, λ) ≡
{

1

REm(r, λ)

∂REm(r, λ)

∂r

}
r=r0−

=
{

1

REm(r, λ)

∂REm(r, λ)

∂r

}
r=r0+

. (7)

We now turn to the Sturm–Liouville theorem. We denote byREm(r, λ) a solution of (6)
with the energyE. Multiplying the equations forREm(r, λ) andREm(r, λ) by REm(r, λ)
andREm(r, λ), respectively, and calculating their difference, we have

∂

∂r

(
REm(r, λ)

∂REm(r, λ)

∂r
− REm(r, λ)∂REm(r, λ)

∂r

)
+ (E − E)REm(r, λ)REm(r, λ)

= √rREm(r, λ)
∫
U(r, r ′, λ)REm(r ′, λ)

√
r ′ dr ′

−√rREm(r, λ)
∫
U(r, r ′, λ)REm(r ′, λ)

√
r ′ dr ′. (8)

According to the boundary condition, bothREm(r, λ) andREm(r, λ) go to zero whenr tends
to zero. Integrating (8) over the variabler in the region [0, r0] and noting the symmetric
property ofU(r, r ′), we have

1

E − E

{
REm(r, λ)

∂REm(r, λ)

∂r
− REm(r, λ)∂REm(r, λ)

∂r

}
r=r0−

= −
∫ r0

0
REm(r

′, λ)REm(r ′, λ) dr ′.

Taking the limit, we obtain

∂Am(E, λ)

∂E
≡ ∂

∂E

(
1

REm(r, λ)

∂REm(r, λ)

∂r

)
r=r0−

= −REm(r0, λ)−2
∫ r0

0
REm(r

′, λ)2 dr ′ < 0. (9)

Similarly, from the boundary condition that whenE 6 0 the radial functionREm(r, λ) tends
to zero at infinity, we have

∂

∂E

(
1

REm(r, λ)

∂REm(r, λ)

∂r

)
r=r0+

= REm(r0, λ)−2
∫ ∞
r0

REm(r
′, λ)2 dr ′ > 0. (10)

Therefore, whenE 6 0, both sides of the matching condition (7) are monotonic with respect
to the energyE. As energy increases, the logarithmic derivative of the radial function at
r0− decreases monotonically, but that atr0+ increases monotonically. This is an expression
of the Sturm–Liouville theorem [22].
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3. The Levinson theorem

The establishment of the Levinson theorem for the case with both local and non-local
cylindrically symmetric potentials is similar to that for the case with only a local potential.

In solving the radial equation (6) in the region [0, r0], only one solution is convergent at
the origin. Thus, for the given potentials the logarithmic derivativeAm(E, λ) is determined
in principle. For example, for free particle (λ = 0) we have

REm(r, 0) =


√

1
2πkrJm(kr) whenE > 0 andk = √E

e−imπ/2
√

1
2πκrJm(iκr) whenE 6 0 andκ = √−E

(11)

where the factor in front of the radial functionREm(r) is not important. The solution
REm(r, 0) given in (11) is a real function. The logarithmic derivative atr0− for E 6 0 is

Am(E, 0) ≡
{

1

REm(r, 0)

∂REm(r, 0)

∂r

}
r=r0−

=


kJ ′m(kr0)
Jm(kr0)

− 1

2r0
whenE > 0

iκJ ′m(iκr0)
Jm(iκr0)

− 1

2r0
whenE 6 0.

(12)

In the region [r0,∞), we haveV (r) = U(r, r ′) = 0. ForE > 0, there are two oscillatory
solutions to (6). Their combination can always satisfy the matching condition (7), so that
there is a continuous spectrum forE > 0:

REm(r, λ) =
√

1
2πkr

{
cosηm(k, λ)Jm(kr)− sinηm(k, λ)Nm(kr)

}
∼ cos

(
kr − 1

2mπ − 1
4π + ηm(k, λ)

)
when r −→∞ (13)

whereNm(kr) is the Neumann function. The phase shiftηm(k, λ) is determined by the
matching condition (7):

tanηm(k, λ) = Jm(kr0)

Nm(kr0)

Am(E, λ)− kJ ′m(kr0)/Jm(kr0)− 1/(2r0)

Am(E, λ)− kN ′m(kr0)/Nm(kr0)− 1/(2r0)
(14)

ηm(k) ≡ ηm(k, 1) (15)

where the primes denote the derivative of the Bessel, Neumann and later the Hankel function
with respect to their argument. Although the radial equation (6) in the region [r0,∞) is
independent ofλ, the solutionREm(r, λ) and the phase shiftηm(k, λ) do depend onλ
through the matching condition (7).

The phase shiftηm(k, λ) is determined from (14) up to a multiple ofπ due to the period
of the tangent function. Levinson determined the phase shiftηm(k) with respect to the phase
shift ηm(∞) at infinite momentum. For any finite potential, the phase shiftηm(∞) will not
change and is always equal to zero. Therefore, Levinson’s definition for the phase shift is
equivalent to the convention that the phase shiftηm(k, λ) is determined with respect to the
phase shiftηm(k, 0) for the free particle, whereηm(k, 0) is defined to be zero:

ηm(k, 0) = 0 where λ = 0. (16)

There is some ambiguity inηm(∞) when a bound state with a positive energy occurs (see
section 4). However, as far as the Levinson theorem is concerned, the latter convention is
more convenient. We prefer to use this convention where the phase shiftηm(k) is determined
completely asλ increases from zero to one. This is the reason why we introduce the
parameterλ.
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For E 6 0 there is only one convergent solution at infinity

REm(r) = ei(m+1)π/2

√
πκr

2
H(1)
m (iκr) ∼ e−κr when r −→∞ (17)

whereH(1)
m (x) is the Hankel function of the first kind. Thus, the matching condition (7) is

not always satisfied. When the matching condition (7) is satisfied, a bound state appears at
this energy. It means that there is a discrete spectrum forE 6 0. From equation (17) we
have{

1

REm(r, 0)

∂REm(r, 0)

∂r

}
r=r0+

= iκH(1)
m (iκr0)′

H
(1)
m (iκr0)

− 1

2r0

=
{
(−m+ 1

2)/r0 ≡ ρm whenE −→ 0

−κ ∼ −∞ whenE −→ −∞.
(18)

On the other hand, ifV (r) = U(r, r ′) = 0, from (12) we obtain

Am(E, 0) ≡
{

1

REm(r, 0)

∂REm(r, 0)

∂r

}
r=r0−

= iκJ ′m(iκr0)
Jm(iκr0)

− 1

2r0
=
{
(m+ 1

2)/r0 whenE −→ 0

κ ∼ ∞ whenE −→ −∞.
(19)

It can easily be seen from (18) and (19) that as energy increases from−∞ to 0, there is
no overlap between two variant ranges of the logarithmic derivatives either side ofr0 such
that there is no bound state whenλ = 0 except for anS wave where there is a half-bound
state atE = 0. The half-bound state will be discussed at the end of this section.

If Am(0, λ) decreases across the valueρm ≡ (−m + 1
2)/r0 asλ increases, an overlap

between two variant ranges of the logarithmic derivatives at two sides ofr0 appears. Since
the logarithmic derivatives of the radial function atr0− decreases monotonically as the
energy increases, and that atr0+ increases monotonically, the overlap means that there must
be one and only one energy where the matching condition (7) is satisfied, i.e. a scattering
state changes to a bound state.

As λ increases, a zero point in the zero-energy solutionR0m(r, λ) may occur through
r0. In this processAm(0, λ) may decrease to−∞, jump to+∞, and decreases again, or
vice versa. It is not a singularity. IfAm(0, λ) decreases through the jump at infinity, again
across the valueρm, another bound state appears.

As λ increases from zero to one, each timeAm(0, λ) decreases across the valueρm, a
new overlap between the variant ranges of two logarithmic derivatives appears such that a
scattering state changes to a bound state. Conversely, each timeAm(0, λ) increases across
the valueρm, an overlap between those two variant ranges disappears such that a bound
state changes back to a scattering state. The number of bound statesnm is equal to the times
thatAm(0) decreases across the valueρm asλ change from zero to one, subtracted by the
times thatAm(0) increases across the valueρm. In wnat follows, we will show from (14)
that this number is simply the phase shiftηm(0) at zero momentum divided byπ .

It can easily be seen from (14) that the phase shiftηm(k, λ) increases monotonically as
the logarithmic derivativeAm(E) decreases:

∂ηm(k, λ)

∂Am(E, λ)

∣∣∣∣
k

= − 8r0 cos2 ηm(k)

π
(
2r0Am(E)Nm(kr0)− 2kr0N ′m(kr0)−Nm(kr0)

)2 6 0. (20)
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The phase shiftηm(0, λ) is the limit of the phase shiftηm(k, λ) ask tends to zero. Therefore,
what we are interested in is the phase shiftηm(k, λ) at sufficiently small momentumk,
k � 1/r0. For small momentumk, from (14) we obtain

tanηm(k, λ) ∼

−π(kr0)2m
22mm!(m− 1)!

Am(0, λ)− (m+ 1
2)/r0

Am(0, λ)− c2k2− ρm
(
1− (kr0)2/(m− 1)(2m− 1)

) whenm > 2

−π(kr0)2
4

Am(0, λ)− 3/(2r0)

Am(0, λ)− c2k2− ρ1
(
1+ 2(kr0)2 ln(kr0)

) whenm = 1

π

2 ln(kr0)

Am(0, λ)− c2k2− ρ0
(
1− (kr0)2

)
Am(0, λ)− c2k2− ρ0

(
1+ 2/ ln(kr0)

) whenm = 0.

(21)

In addition to the leading terms, we include in (21) some next-to-leading terms, which are
useful only for the critical case where the leading terms cancel each other out.

First, it can be seen from (21) that tanηm(k, λ) tends to zero ask goes to zero, i.e.
ηm(0, λ) is always equal to a multiple ofπ . In other words, if the phase shiftηm(k, λ) for
sufficiently smallk is expressed as a positive or negative acute angle plusnπ , wheren is an
integer, its limitηm(0, λ) is equal tonπ . It means thatηm(0, λ) changes discontinuously.
By the way, in three dimensions, the phase shift at zero momentum of theS wave may
have an additionalπ/2 when the half-bound state occurs.

Second, since the phase shiftηm(k, λ) increases monotonically as the logarithmic
derivativeAm(E, λ) decreases, the phase shift at zero momentumηm(0, λ) will jump by π
if tanηm(k, λ) at sufficiently smallk changes sign from positive to negative asAm(E, λ)
decreases, and vice versa. Whenλ changes from zero to one continuously, each time
Am(0, λ) decreases from near and larger than the valueρm to smaller than that value, the
denominator in (21) changes sign from positive to negative and the remaining factor keeps
positive, such that the phase shift at zero momentumηm(0, λ) jumps byπ . Conversely, each
time Am(0, λ) increases across the valueρm, the phase shift at zero momentumηm(0, λ)
jumps by−π . Therefore, the phase shiftηm(0)/π is just equal to the number of times
Am(0, λ) decreases across the valueρm asλ increases from zero to one, minus the number
of timesAm(0, λ) increases across that value. Therefore, we have proved the Levinson
theorem for the Schrödinger equation in two dimensions for non-critical cases:

ηm(0) = nmπ. (22a)

Third, we should pay some attention to the casem = 0. WhenA0(0, λ) decreases
across the valueρ0 = 1/(2r0), both the numerator and denominator in (21) change sign,
but not spontaneously because the next-to-leading terms in the numerator and denominator
in (21) are different. It is easy to see that the numerator changes sign first, and then the
denominator changes sign, i.e. tanη0(k, λ) at smallk changes first from negative to positive,
then to negative again such thatη0(0, λ) jumps byπ . Similarly, whenAm(0, λ) increases
across the valueρ0, η0(0, λ) jumps by−π .

When λ = 0 andm = 0, the numerator in (21) is equal to zero, the denominator is
positive, and the phase shiftη0(0) is defined to be zero. IfA0(E) decreases whenλ increases
from zero, the numerator becomes negative first, and then the denominator changes from
positive to negative such that the phase shiftη0(0) jumps byπ and a new bound state
appears simultaneously.
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Finally, we turn to discuss the critical cases where a half-bound state occurs. If the
logarithmic derivativeAm(0, 1) is equal to the valueρm, the following solution with zero
energy in the region [r0,∞) will match thisAm(0, 1) at r0:

R0m(r, 1) = r−m+1/2.

It is a bound state whenm > 2, but called a half-bound state whenm = 1 or 0. A half-
bound state is a zero-energy solution of the Schrödinger equation which is finite but which
does not decay fast enough at infinity to be square integrable. We are going to discuss the
critical case whereAm(0, λ) decreases (or increases) and reaches, but does not cross, the
valueρm asλ increases from a value somewhat smaller than one up to one. For definiteness,
we discuss the case whereAm(0, λ) decreases and reaches the valueρm asλ increases to
one. In this case a new bound state with zero energy appears form > 2, but does not
appear form = 1 and 0. We need to check whether or not the phase shiftηm(0) increases
an additionalπ .

It is evident that the denominator in (21) form > 2 has changed sign from positive to
negative asAm(0) decreases and reaches the valueρm, i.e. the phase shiftηm(0) jumps by
π and simultaneously a new bound state of zero energy appears.

For m = 0 the next-to-leading term of the denominator in (21) is positive and larger
than the term−c2k2, such that the denominator does not change sign, i.e. the phase shift
ηm(0) does not jump. Simultaneously, no new bound state appears.

Form = 1 the next-to-leading term of the denominator in (21) is negative such that the
denominator does change sign, i.e. the phase shiftηm(0) jumps byπ asAm(0) decreases
and reaches the valueρ1. However, in this case no new bound state appears simultaneously.

The discussion for the cases whereAm(0) increases and reaches the valueρm is similar.
Therefore, Levinson’s theorem (22a) holds for the critical cases except form = 1. In the
latter case, Levinson’s theorem for the Schrödinger equation with both local and non-local
interactions in two dimensions becomes

ηm(0) = (nm + 1)π when m = 1 and a half-bound state occurs. (22b)

As discussed above, it is found that the Levinson theorem holds without any modification
for the case where a non-local potential is included.

4. Positive-energy bound states

It is well known that, in the case with only a local interaction, the wavefunction and its first
derivative would never vanish at the same point except at the origin, so there is no positive-
energy bound state. However, in the case with a non-local interaction, Martin showed
that the solution with an asymptotic form is not unique when the potential satisfies some
conditions [4], i.e. there exists the positive-energy bound state with a vanishing asymptotic
form. If a small perturbative potential is added such that the non-local potential satisfies
the conditions, the positive-energy bound state will appear and the phase shift at this energy
increases rapidly by almostπ . This can be seen explicitly in the examples given by
Martin [4] and Kermode [23].

It was pointed out by Kermode that the inverse tangent function is not single-valued and
it is physically more satisfactory to include a jump ofπ to the phase shift at the energyE0,
where a positive-energy bound state occurs. Martin and Chadan [4, 21] defined the phase
shift to be continuous even atE0 so that an additionalπ will be included intoδ(0)− δ(∞)
for each positive-energy bound state. This is their reason for modifying Levinson’s theorem
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by the termσπ whereσ denotes the number of the positive-energy bound states. However,
according to the viewpoint of Kermode, no modification to the Levinson theorem is required.

However, the phase shift at zero energy in our convention does not change, no matter
which viewpoint is used, i.e. no matter whether the phase shift jumps or not at the energy
with a positive-energy bound state. Therefore, the Levinson theorem (22) holds for the
cases where positive-energy bound states may occur.

5. The physically redundant state

The resonating group model of the scattering of nuclei, or other composite systems, derives
an effective two-body interaction in which a non-local potential appears. There are some
physically redundant states which describe Pauli-forbidden states for the compound system,
and the physical two-body states must be orthogonal to these redundant states [24]. In
the case of three dimensions, Saito [25], Okaiet al [26], and Englefield and Shoukry [27]
proposed a simple non-local term which guarantees the required orthogonality, and verified
that it was a good representation of the interactions. If there is just one redundant state
represented by the real normalized wavefunctionU(r), then the two-dimensional Saito
equation is

d2

dr2
REm(r)+

(
E − V (r)− m

2− 1
4

r2

)
REm(r)

= U(r)
∫ ∞

0
U(s)

(
d2

ds2
− V (s)− m

2− 1
4

s2

)
REm(s) ds (23)

∫ ∞
0
U2(s) ds = 1

and

E

∫ ∞
0
U(r)REm(r) dr = 0. (24)

The solution of (23) satisfies the orthogonality constraint except for that of zero energy.
Saito’s non-local potential is separable.

If the Schr̈odinger equation with only a local potentialV (r) has a bound state with a
negative−E < 0, the corresponding wavefunction is denoted byψ(r):

d2

dr2
ψ(r)−

(
V (r)+ m

2− 1
4

r2

)
ψ(r) = Eψ(r)∫ ∞

0
ψ(r)2 dr = 1.

(25)

It is obvious thatU(r) = ψ(r) satisfies (23) with zero energy. Therefore, it is the
so-called physically redundant state. As far as equation (23) is concerned, the redundant
state is one of the bound states with zero energy.
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