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Abstract. In the light of the Sturm-Liouville theorem, the Levinson theorem for the
Schibdinger equation with both local and non-local cylindrically symmetric potentials is studied.

It is proved that the two-dimensional Levinson theorem holds for the case with both local and
non-local cylindrically symmetric cut-off potentials, which is not necessarily separable. In
addition, the problems related to the positive-energy bound states and the physically redundant
state are also discussed.

1. Introduction

The Levinson theorem [1], an important theorem in scattering theory, established the
relation between the total number of bound states and the phase shifts at zero momentum.
The Levinson theorem has been proved by several authors with different methods, and
generalized to different fields [2—9], including the cases with the non-local interactions [4, 5].
Generally speaking, three main methods are used to prove the Levinson theorem. One [1]
is based on an elaborate analysis of the Jost function. This method requires a well-behaved
potential. The second, based on the Green-function method [6], expounds that the total
number of the physical states, which is infinite, is proved to be independent of the potential
and the number of the bound states is the difference between the infinite numbers of the
scattering states without and with the potential. The third method proves the Levinson
theorem by the Sturm-Liouville theorem [7, 8]. This simple, intuitive method can easily be
generalized. Some obstacles and ambiguities, which may occur with the other two methods,
disappear in the third method. We have succeeded in dealing with the non-relativistic and
relativistic problems in two dimensions in this way [10, 11].

The reasons why we write this paper are that, on the one hand, the Levinson theorem
in two dimensions has been studied by experiment [12] as well as theoretically [13, 10, 11]
because of the wide interest in lower-dimensional field theories and other modern physics
[14-20], and on the other, the Levinson theorem for non-local interactions in two dimensions
has never appeared in the literature.

This paper is organized as follows. In section 2, we establish the Sturm-Liouville
theorem for non-local interactions in two dimensions. The Levinson theorem for this case
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will be set up in section 3. Some problems related to the positive-energy bound states and
the physically redundant state will be studied in sections 4 and 5.

2. The Sturm-Liouville theorem

Throughout this papér = 1 and the masg = % are employed for simplicity. Consider the
Schibdinger equation with a local potenti&l(r) and a non-local potentid/ (r, '), where
both potentials are cylindrically symmetric:

19 9 1 92
__r_ [
ror or  r2 o2

Hy(r,¢) = — ( ) Y(r, @)+ V)Y, e)

+/ Ur,r)s8(¢" — o)y (', ¢") r'dr’ do

=Ey(r, ¢). 1)

The mesonic theory of nuclear forces indicates that the interaction between two nucleons
is local at great distances but becomes non-local if the two nucleons come close. To simplify
the expression, we assume, following Martin [4], that the non-local potdiitial’) is real,
continuous, symmetric, and vanishing at large distances [21]:

Uu@r',r)
Utr,rY =3 U@, r) =001 atr ~0 2)
U(r,r') =0 whenr > ro.

As usual, the local potentidl (r) is real and continuous. We assume thdt) satisfies

or™h atr ~0
V() = ®3)

Viry=0 whenr > rg.
The first condition is necessary for the wavefunction to be well-behaved at the origin [1],
and the potential with the second condition is called a cut-off one, namely, it vanishingly
small beyond a sufficiently large radiug It was proved that the tail of the local potential
at infinity will not change the essence of the proof [10] if it decays faster thé&mt infinity.
Under this assumption, the range of the in (1) is, in fact, from & t@nd the equation in
the region fo, co) becomes that for the free particle.

We introduce a parameterfor the potentials

V(r,A) =1V (r) U(r,r', ) = U@, 1. (4)

As X increases from zero to one, the potentidlg, A) andU (r, r’, ») change from zero to
the given potential®/(r) and U (r, r’), respectively.
Owing to the symmetry of the potentials, letting

Y(r, ¢, 2) =r VPRp,(r, NEM m=0,1,2 ... (5)
we obtain the radial equation
2 m? —1/4

0
~—SRen(r, M)+ E—-V(@,A) — ———— ) Reu(r, A)
ar2 r2

= \/Ff UGr, 7', \)Rem (', VN dr’ (6)
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where+m and E denote the angular momentum and energy, respectively. Since the radial
function Rg,, (r, 1) is independent of the sign of the angular momentum, we only discuss
the cases with non-negative.

We are going to solve the radial equation (6) in two regions-dPand [ro, co), and
match two solutions aty. Since the Sclidinger equation is linear, the wavefunction can
be multiplied by a constant factor. Removing the effect of the factor, we only need one
matching condition aty for the logarithmic derivative of the radial function:

1 BREm(r,A)} _{ 1 aREm(r,,\)}
r=ro— r=ro+

An(E, L) = { )

Ren(r, M) ar Ren(r, A) ar

We now turn to the Sturm-Liouville theorem. We denoteﬁ% (r, ») a solution of (6)
with the energyE. Multiplying the equations foRg,, (r, ) and Rg,, (r, A) by Rg,,(r, 1)
and Rg,,, (r, 1), respectively, and calculating their difference, we have

+(E — E)Rgp(r, )R (r, 1)

0 IRgm(r, ) = OREM(r, A)
or or ar

- (REm(ra )")— - REm(ra )\)
= V7R (r, 1) / UG, ', D Rem (', MNF dr’

_ﬂEm(rv )")\/U(rv r,v)")REm(r/y )\-)\/7 dr,. (8)

According to the boundary condition, bo#t,, (r, A) andR g,, (r, ) go to zero whem tends
to zero. Integrating (8) over the variabtein the region [Qrg] and noting the symmetric
property ofU (r, r’), we have

1 IREm(r, ) — dREn(r, 1)
— Regm(r,A\)————= — Rgp,(r, \) —
= { Em(ry A) o Em (s A) o ]
r=ro—

ro _
- / Rim (' W R (', 2) "
0

Taking the limit, we obtain

AL (E, N 8( 1 8REm(r,/\)>

IE 9E \Rpn(r,h)  or

ro
= —Rgu(ro, )»)_2/0 Ren (', 1)? dr’ < 0. (9)

Similarly, from the boundary condition that whéh< 0 the radial functiomRg,, (r, A) tends
to zero at infinity, we have

1 R (r, A o [
K ORen(r. 1) = Rpy(ro. 1) 72 / R (', 2)? dr' > 0. (10)
oE REm (r7 )") ar r=ro+ o

Therefore, wherE < 0, both sides of the matching condition (7) are monotonic with respect
to the energyE. As energy increases, the logarithmic derivative of the radial function at
ro— decreases monotonically, but thatgt increases monotonically. This is an expression
of the Sturm-Liouville theorem [22].
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3. The Levinson theorem

The establishment of the Levinson theorem for the case with both local and non-local

cylindrically symmetric potentials is similar to that for the case with only a local potential.
In solving the radial equation (6) in the region [g], only one solution is convergent at

the origin. Thus, for the given potentials the logarithmic derivatiyg E, 1) is determined

in principle. For example, for free particle & 0) we have

Sk Jy (kr) whenE > 0 andk = vVE
Ren(r,0) = (11)
g imr/2 %ma*]m(ilcr) whenE < 0 andk = /—F

where the factor in front of the radial functioRg,, (r) is not important. The solution
REgn(r, 0) given in (11) is a real function. The logarithmic derivativergt for E < 0 is

kJ' (k 1
wkro) 1 whenE > 0
i (E 0) _ { 1 8REm(r7 O) } _ Jm(krO) 27'0 (12)
’ REm (r, 0) ar r=ro— iK‘lyiz(iKrO) 1 When E < 0
o (ikrg) 2rg c

In the region fo, o0), we haveV (r) = U(r, r') = 0. ForE > 0, there are two oscillatory
solutions to (6). Their combination can always satisfy the matching condition (7), so that
there is a continuous spectrum far> O:

Ren(r, ) =/ %nkr{COSnm(k, Ay (kr) — sinny, (k, )\)Nm(kr)}

~ cos(kr — %mn — %n + o (k, A)) when r — oo (13)
where N, (kr) is the Neumann function. The phase shift(k, 1) is determined by the
matching condition (7):

Im(kro) A (E, L) —kJ, (kro)/Jm(kro) — 1/(2ro)
N (kro) An(E, L) — kN, (kro)/Ny(kro) — 1/(2ro)

M (k) = 1 (k, 1) (15)

where the primes denote the derivative of the Bessel, Neumann and later the Hankel function
with respect to their argument. Although the radial equation (6) in the regignd) is
independent ofs, the solutionRg, (r, A) and the phase shify, (k, 2) do depend om
through the matching condition (7).

The phase shifi,, (k, A) is determined from (14) up to a multiple afdue to the period
of the tangent function. Levinson determined the phase ghift) with respect to the phase
shift n,,(c0) at infinite momentum. For any finite potential, the phase shjftoo) will not
change and is always equal to zero. Therefore, Levinson’s definition for the phase shift is
equivalent to the convention that the phase shiftk, 1) is determined with respect to the
phase shift;,, (k, 0) for the free particle, where,, (k, 0) is defined to be zero:

Nm(k,0) =0 where A = 0. (16)

There is some ambiguity in,,(co) when a bound state with a positive energy occurs (see
section 4). However, as far as the Levinson theorem is concerned, the latter convention is
more convenient. We prefer to use this convention where the phase,stiijtis determined
completely asi increases from zero to one. This is the reason why we introduce the
parameten.

tanmn,, (k, 1) =

(14)
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For E < 0 there is only one convergent solution at infinity

Ry (r) = &ntbm/2 n—ng,f})(i;cr) ~ e when r — oo 17)

where H® (x) is the Hankel function of the first kind. Thus, the matching condition (7) is
not always satisfied. When the matching condition (7) is satisfied, a bound state appears at
this energy. It means that there is a discrete spectruntfer 0. From equation (17) we

have

{ 1 8REm(r,O)} _ ikHP(ikr) 1
Rpn(r, 0 or J_p  HP(krg) 2o

(—m+%)/ro = pm whenE — 0
- 2)/70 (18)
—K ~ —00 whenE — —oo.
On the other hand, it/ (r) = U(r, ") = 0, from (12) we obtain
1 ORg,(r, 0
An(E,0) = (7, 0)
REm (I’, 0) or r=ro—
ikl (krg 1 [+ 3/ whenE — 0 19
"~ n(ikro) 20 |k ~o0 whenE — —oo.

It can easily be seen from (18) and (19) that as energy increases—franto 0, there is
no overlap between two variant ranges of the logarithmic derivatives either sigesoth
that there is no bound state wh&n= 0 except for anS wave where there is a half-bound
state atE = 0. The half-bound state will be discussed at the end of this section.

If A,,(0, L) decreases across the valpg = (—m + %)/ro as A increases, an overlap
between two variant ranges of the logarithmic derivatives at two sideg ajpears. Since
the logarithmic derivatives of the radial function mt— decreases monotonically as the
energy increases, and thatgt increases monotonically, the overlap means that there must
be one and only one energy where the matching condition (7) is satisfied, i.e. a scattering
state changes to a bound state.

As ) increases, a zero point in the zero-energy soluign(r, A) may occur through
ro. In this processA,, (0, ) may decrease te-co, jump to +oo, and decreases again, or
vice versa. It is not a singularity. W,, (0, 1) decreases through the jump at infinity, again
across the valug,,, another bound state appears.

As A increases from zero to one, each timg (0, 1) decreases across the valpg, a
new overlap between the variant ranges of two logarithmic derivatives appears such that a
scattering state changes to a bound state. Conversely, eacl fitBei) increases across
the valuep,,, an overlap between those two variant ranges disappears such that a bound
state changes back to a scattering state. The number of boundnstasesqual to the times
that A,,(0) decreases across the valgg asA change from zero to one, subtracted by the
times thatA,,(0) increases across the valpg. In wnat follows, we will show from (14)
that this number is simply the phase shift(0) at zero momentum divided hy.

It can easily be seen from (14) that the phase shjfik, A) increases monotonically as
the logarithmic derivatived,,, (E) decreases:
Bk, 3) | _ 8r0 COS 1,0 (k) <o (20)
0AnE M, 7(20An(E)N,y (kro) — 2kroN;, (kro) — Ny (kro))®
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The phase shift,, (0, A) is the limit of the phase shifi,, (k, 1) ask tends to zero. Therefore,
what we are interested in is the phase shjftk, A) at sufficiently small momentura,
k <« 1/ro. For small momentunk, from (14) we obtain

tann,, (k, A) ~

—7 (kro)™" A (0,2) = (m + 3)/ro whenm > 2
22mml(m — D! Ay (0, 2) — k2 — py (1 — (kro)?/(m — 1)(2m — 1)) ;
—1(krg)? A (0, 1) — 3/(2ro) whenm = 1

4 Au(0,1) — k2 — pa(1+ 2(kro)?In(kro)) -
T Ap(0, 1) = ¢?k? — po (1 — (kro)®) whenm = 0
21n(kro) A,,(0, 1) — c2k? — po(1+ 2/ In(kro)) o
(21)

In addition to the leading terms, we include in (21) some next-to-leading terms, which are
useful only for the critical case where the leading terms cancel each other out.

First, it can be seen from (21) that tap(k, A) tends to zero ag goes to zero, i.e.
(0, A) is always equal to a multiple of. In other words, if the phase shift, (k, A) for
sufficiently smallk is expressed as a positive or negative acute anglesplusvheren is an
integer, its limitn,, (0, A) is equal tonz. It means that,, (0, 1) changes discontinuously.

By the way, in three dimensions, the phase shift at zero momentum of thave may
have an additionat /2 when the half-bound state occurs.

Second, since the phase shiff,(k, 1) increases monotonically as the logarithmic
derivative A,, (E, A) decreases, the phase shift at zero momeniy, 1) will jump by =
if tann,,(k, 1) at sufficiently smallk changes sign from positive to negative As(E, 1)
decreases, and vice versa. Wherchanges from zero to one continuously, each time
A, (0, 1) decreases from near and larger than the valydo smaller than that value, the
denominator in (21) changes sign from positive to negative and the remaining factor keeps
positive, such that the phase shift at zero momenip®, A) jumps byr. Conversely, each
time A,,(0, A) increases across the valpg, the phase shift at zero momentu (0, A)
jumps by —m. Therefore, the phase shift,(0)/7 is just equal to the number of times
A,,(0, 1) decreases across the valyg asi increases from zero to one, minus the number
of times A,,(0, 1) increases across that value. Therefore, we have proved the Levinson
theorem for the Sckdinger equation in two dimensions for non-critical cases:

Nm(0) = npm. (22a)

Third, we should pay some attention to the case= 0. When Ay(0, ) decreases
across the valugg = 1/(2rp), both the numerator and denominator in (21) change sign,
but not spontaneously because the next-to-leading terms in the numerator and denominator
in (21) are different. It is easy to see that the numerator changes sign first, and then the
denominator changes sign, i.e. t@itk, 1) at smallk changes first from negative to positive,
then to negative again such thaf(0, 1) jumps byz. Similarly, whenA,, (0, A) increases
across the valugg, no(0, A) jumps by—.

Wheni = 0 andm = 0, the numerator in (21) is equal to zero, the denominator is
positive, and the phase shif§(0) is defined to be zero. Wy(E) decreases whenincreases
from zero, the numerator becomes negative first, and then the denominator changes from
positive to negative such that the phase shift0) jumps byz and a new bound state
appears simultaneously.
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Finally, we turn to discuss the critical cases where a half-bound state occurs. If the
logarithmic derivativeA,, (0, 1) is equal to the valug,,, the following solution with zero
energy in the regionrf, co) will match this A,,(0, 1) at ro:

Ron(r, 1) = r "2,

It is a bound state whem > 2, but called a half-bound state when= 1 or 0. A half-

bound state is a zero-energy solution of the 8dhmger equation which is finite but which

does not decay fast enough at infinity to be square integrable. We are going to discuss the
critical case whered,, (0, A) decreases (or increases) and reaches, but does not cross, the
valuep,, as increases from a value somewhat smaller than one up to one. For definiteness,
we discuss the case whesg, (0, A) decreases and reaches the vahjeas A increases to

one. In this case a new bound state with zero energy appears for2, but does not
appear form = 1 and 0. We need to check whether or not the phase shif?) increases

an additionalbr.

It is evident that the denominator in (21) far > 2 has changed sign from positive to
negative as4,,(0) decreases and reaches the valyei.e. the phase shift,, (0) jumps by
7 and simultaneously a new bound state of zero energy appears.

For m = 0 the next-to-leading term of the denominator in (21) is positive and larger
than the term—c?k?, such that the denominator does not change sign, i.e. the phase shift
nm(0) does not jump. Simultaneously, no new bound state appears.

Form = 1 the next-to-leading term of the denominator in (21) is negative such that the
denominator does change sign, i.e. the phase shif®) jumps byr as A,,(0) decreases
and reaches the valyg. However, in this case no new bound state appears simultaneously.

The discussion for the cases whetg(0) increases and reaches the vatyeis similar.
Therefore, Levinson’s theorem (@Rholds for the critical cases except far= 1. In the
latter case, Levinson's theorem for the Sifinger equation with both local and non-local
interactions in two dimensions becomes

Nm(0) = (n, + Dm when m =1 and a half-bound state occurs (220)

As discussed above, it is found that the Levinson theorem holds without any modification
for the case where a non-local potential is included.

4. Positive-energy bound states

It is well known that, in the case with only a local interaction, the wavefunction and its first
derivative would never vanish at the same point except at the origin, so there is no positive-
energy bound state. However, in the case with a non-local interaction, Martin showed
that the solution with an asymptotic form is not unique when the potential satisfies some
conditions [4], i.e. there exists the positive-energy bound state with a vanishing asymptotic
form. If a small perturbative potential is added such that the non-local potential satisfies
the conditions, the positive-energy bound state will appear and the phase shift at this energy
increases rapidly by almost. This can be seen explicitly in the examples given by
Martin [4] and Kermode [23].

It was pointed out by Kermode that the inverse tangent function is not single-valued and
it is physically more satisfactory to include a jumpsofto the phase shift at the enerdi,
where a positive-energy bound state occurs. Martin and Chadan [4, 21] defined the phase
shift to be continuous even &, so that an additionat will be included intos(0) — §(c0)
for each positive-energy bound state. This is their reason for modifying Levinson’s theorem
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by the termor whereo denotes the number of the positive-energy bound states. However,
according to the viewpoint of Kermode, no modification to the Levinson theorem is required.

However, the phase shift at zero energy in our convention does not change, no matter
which viewpoint is used, i.e. no matter whether the phase shift jumps or not at the energy
with a positive-energy bound state. Therefore, the Levinson theorem (22) holds for the
cases where positive-energy bound states may occur.

5. The physically redundant state

The resonating group model of the scattering of nuclei, or other composite systems, derives
an effective two-body interaction in which a non-local potential appears. There are some
physically redundant states which describe Pauli-forbidden states for the compound system,
and the physical two-body states must be orthogonal to these redundant states [24]. In
the case of three dimensions, Saito [25], O&gal [26], and Englefield and Shoukry [27]
proposed a simple non-local term which guarantees the required orthogonality, and verified
that it was a good representation of the interactions. If there is just one redundant state
represented by the real normalized wavefunctid(), then the two-dimensional Saito
equation is

2_ 1

d2 m-—z
Sz Rem() + (E - V() - — )REm(r>
0 dz m2 _ 1

=U(r) /0 U(s)(@ —VE) - 4)REm<s> ds (23)
foo U?(s)ds =1
0
and

E fooo U(r)Rg,(r) dr =0. (24)

The solution of (23) satisfies the orthogonality constraint except for that of zero energy.
Saito’s non-local potential is separable.

If the Schibdinger equation with only a local potenti#l(») has a bound state with a
negative—& < 0, the corresponding wavefunction is denotedybi):

2_1
m-—3

d2
ml/f(r)—(V(r)Jr 2 )w(m:sw(r)

(25)
/ v(r)?dr = 1.
0

It is obvious thatU (r) = v (r) satisfies (23) with zero energy. Therefore, it is the
so-called physically redundant state. As far as equation (23) is concerned, the redundant
state is one of the bound states with zero energy.
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